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ABSTRACT
Early/immature T cell precursor acute lymphoblastic leukemia (EITP ALL) 

represents a subset of human leukemias distinct from other T-ALL, and associated with 
poor prognosis. Clinical studies have identified chromosomal translocations involving 
the NUP98 gene and point mutations of IDH genes as recurrent mutations in patients 
with EITP-ALL.  In a recent study using genetically engineered mice, we demonstrated 
that cooperation of an Idh2R140Q mutation with a NUP98-HOXD13 (NHD13) fusion gene 
resulted in EITP-ALL. Highlights of this double transgenic mouse model included the 
similarity of the immunophenotypic, mutational and gene expression landscape with 
human EITP-ALL. Additional studies showed that the Idh2R140Q/NHD13 EITP-ALL are 
sensitive to selective mutant IDH2 inhibitors in vitro, leading to the possibility that 
these mice can serve as a useful model for the study of EITP ALL development and 
therapy.

Early T-cell precursor (ETP) leukemia and early 
immature T-ALLs represent a group of human leukemia 
that have an immunophenotype and gene expression 
profile that is distinct from other T-ALLs, and has 
historically been associated with poor prognosis [1, 2]. 
Because ETP leukemias and immature T-ALLs have 
similar immunophenotype and gene expression profile 
we and others elected to group them as early/immature 
T cell precursor (EITP) ALL [2, 3]. The characteristic 
immunophenotype is negative for markers of mature 
thymocytes (CD4 and CD8) but positive for markers of 
myeloid or hematopoietic stem cells.

Highly specific gain of function mutations in 
isocitrate dehydrogenase 1 or 2 (IDH1/2) were identified 
in patients with acute myeloid leukemia (AML) over a 
decade ago [4, 5], and have more recently been associated 
with T-cell leukemias [2, 3, 6, 7], especially EITP [8]. In 
efforts to develop in vivo models for IDH1/2 leukemia, 
several investigators have developed genetically 
engineered mice that express mutant forms of Idh1 or Idh2 
[3, 9, 10]. In general, these mice did not develop leukemia, 
suggesting that additional, complementary mutations may 
be required for oncogenic transformation initiated by an 
Idh1/2 mutation. 

Coincidentally, whole exome sequencing of AML 
which developed in mice that expressed a NUP98-HOXD13  
(NHD13) transgene revealed that 21% of these samples 
had acquired an Idh1p.R132H mutation, suggesting that 
an NHD13 transgene might collaborate with an Idh1/2 
mutation to generate AML [11]. Since IDH2p.R140Q is 
the most common IDH mutation seen in patients with 
AML [4], we predicted that the combination of these two 
mutations would lead to AML, and generated Idh2R140Q 
transgenic mice that were crossed with NHD13 transgenic 
mice to test this hypothesis. As anticipated, we found 
that the onset of leukemia was significantly accelerated 
in Idh2R140Q/NHD13 double transgenic mice compared 
to single transgenic NHD13 or Idh2R140Q mice [3]. 
Surprisingly, the vast majority of leukemias that developed 
in Idh2R140Q/NHD13 double transgenic mice were not AML, 
but rather an immature T-cell leukemia that displayed 
an immunophenotype which was consistent with either 
DN1 thymocytes (CD4−CD8−CD44+CD25−CD90−Kit+), 
DN2 thymocytes, (CD4−CD8−CD44+CD25+CD90+Kit−), 
or an immunophenotype intermediate between DN1 and 
DN2. Additionally, lack of surface CD3 (but presence of 
cytoplasmic CD3), and the presence of clonal Tcrb DJ (but 
not complete VDJ) gene rearrangements suggested that 
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the murine Idh2R140Q/NHD13 DN1/DN2 leukemias were 
similar to human EITP-ALL.

Early immature thymic progenitors that retain 
both lymphoid and myeloid lineage potential have 
been identified as the target cell population for EITP-
ALL transformation [1, 12]. Examination of young, 
clinically healthy (i.e, no evidence of leukemia) Idh2R140Q/

NHD13 double transgenic mice showed a severe block 
in thymocyte maturation, and an expansion of DN 
thymocytes with oligoclonal Tcrb DJ rearrangement. 
Although NHD13 transgene alone impairs thymocyte 
differentiation [3, 13], this is potentiated by the addition of 
the Idh2R140Q transgene, resulting in a severe differentiation 
block at the DN2 to DN3 transition. The differentiation 

Figure 1: Idh2R140Q/NHD13 double transgenic mice develop EITP ALL resembling the human disease. Top, Generation of 
Idh2R140Q/NHD13 mice. Middle, Leukemic cells display blast morphology, DN1 immunophenotype, and clonal Tcrb DJ rearrangement. GL, 
germline (non-rearranged) Tcrb. Bottom, Acquired mutations identified by whole exome sequencing (WES) in Idh2R140Q/NHD13 leukemia 
compared to those in NHD13-only leukemia. Mutations in orange are common in human EITP. RNA-seq from murine EITP ALL (Idh2R140Q/
NHD13) compared to murine non-EITP ALL. GSEA shows similarity between genes enriched in human and mouse EITP.
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block characterized at an immunophenotype level was 
also evident at a transcriptional level as Idh2R140Q/NHD13 
DN1/DN2 leukemias were enriched for genes expressed 
in DN1 thymocytes as compared to DN3 thymocytes. 
Taken together, these findings support the hypothesis that 
Idh2R140Q/NHD13 leukemias originated from early T cell 
precursors in the thymus, similar to human EITP-ALL [1].

The genomic landscape of human EITP-ALL 
has been recently characterized [8, 12], and mutations 
that are more prevalent in EITP-ALL as compared to 
non-EITP T-ALL have been identified. Using whole 
exome sequencing we were able to show that acquired 
mutations in human EITP-ALL (such as KRAS, NRAS, 
PTPN11, JAK3, SH2B3, SETD2, and EZH2) were 
enriched in Idh2R140Q/NHD13 DN1/DN2 T-ALL, and 
NOTCH1 mutations, which are less common in EITP 
T-ALL were also less common in the Idh2R140Q/NHD13 
DN1/DN2 T-ALL. Finally, gene set enrichment analysis 
(GSEA) showed that the gene expression profile of 
Idh2R140Q/NHD13 DN1/DN2 T-ALL was similar to that 
of human EITP-ALL, further reinforcing the potential 
of this mouse model in elucidating transformation 
pathways relevant for understanding human EITP-ALL 
(Figure 1).

Enasidenib (AG-221) is a potent selective inhibitor 
of the mutant IDH2 enzyme which has recently been 
approved for treatment of relapsed or refractory AML 
patients with IDH2 mutations [14]. Using an OP9-DL1 co-
culture system we established an immortalized Idh2R140Q/
NHD13 DN cell line and found that treatment of these 
immortalized cells with AG-221 led to marked decrease 
in cell proliferation suggesting targeting IDH2 mutations 
may be an effective treatment for EITP-ALL as well as 
AML. 

The study by Goldberg and colleagues [3] 
demonstrated that collaboration of an IDH2 mutation 
with a NUP98-HOXD13 translocation leads to a highly 
penetrant EITP-ALL by targeting early thymic progenitor 
cells. In the context of human disease, it is important to 
note that both NUP98 translocations and IDH1/2 mutation 
have been reported as recurrent events in EITP-ALL [6–8, 
15, 16]. Additionally, the report [3] demonstrated that the 
Idh2R140Q/NHD13 DN1/DN2 T-ALL recapitulates human 
EITP-ALL in terms of immunophenotype, Tcrb gene 
rearrangements, gene expression profile, and landscape of 
acquired mutations. We predict that the Idh2R140Q/NHD13 
mouse model will serve as an excellent tool to study EITP 
biology and identify therapies for patients with EITP 
leukemia.
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