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ABSTRACT:
The human epidermal growth factor receptor (HER) family plays a major role 

in cancer cell proliferation. Overexpression of these receptors occurs in various 
cancers, including breast cancer, and correlates with shorter time to relapse and 
lower overall survival. We recently reported that TAK-285, an orally bioavailable small 
molecule inhibitor of HER kinases, is not a p-glycoprotein substrate and penetrates 
the blood-brain barrier, suggesting favorable activity for the treatment of brain 
metastases. To identify the determinants of sensitivity to TAK-285, we examined the 
relationship between the IC50 values of TAK-285 for cell growth inhibition and the 
expression of candidate genes that are involved in the HER family signaling pathway 
and trastuzumab resistance in a panel of human breast cancer cell lines, other types 
of cancer cells, and non-transformed cells in vitro. These analyses showed an inverse 
correlation between sensitivity to TAK-285 (IC50 values) and HER2 or HER3 expression. 
HER3 was highly phosphorylated in TAK-285-sensitive cells, where TAK-285 treatment 
reduced HER3 phosphorylation level. Because HER3 does not possess kinase activity 
and a selective inhibitor of HER2 but not of an epidermal growth factor receptor 
reduced the phospho-HER3 level, HER3 was suggested to be trans-phosphorylated 
by HER2. HER3 knockdown using small interfering RNA (siRNA) inhibited cancer cell 
growth in TAK-285-sensitive cells but not in TAK-285-insensitive cells. These results 
suggest that HER2 and HER3 mainly regulate cancer cell growth in TAK-285-sensitive 
cells and that phospho-HER3 could be used as a potential molecular marker to select 
patients most likely to respond to TAK-285.

INTRODUCTION

HER (ErbB) family consists of epidermal growth 
factor receptor (EGFR; HER1, ErbB1), HER2 (ErbB2), 
HER3 (ErbB3), and HER4 (ErbB4). These receptors 
possess intrinsic tyrosine kinase activity within the 
intracellular domain except HER3. After binding of 
ligands such as epidermal growth factor (EGF) or 
heregulin to receptors, biological effects are exerted 
through homo- or heterodimerization [1, 2].

EGFR was identified as a receptor for EGF with high 
similarity to the v-erbB oncogene of avian erythroblastic 
leukemia virus [3]. EGFR is overexpressed in various 

tumors and correlates with patients’ poor prognosis [4]. 
HER2 was originally identified as an activated protein in 
rat neuroblastoma, and it possesses homology to EGFR [5, 
6]. Moreover, isolated cDNA has transforming activity [7]. 
HER2 is overexpressed in approximately 25% of breast 
cancer patients and is a poor prognostic marker [8]. HER2 
is also overexpressed in various cancers such as ovarian, 
lung, and prostate cancers [9]. In clinical settings, EGFR 
kinase inhibitors such as gefitinib and erlotinib are used 
for advanced non-small cell lung cancer. The anti-HER2 
antibody trastuzumab is used for the treatment of HER2-
overexpressing breast cancer patients and the EGFR/
HER2 kinase inhibitor lapatinib is used for the treatment 
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of HER2-overexpressing metastatic breast cancer patients 
who have progressed on trastuzumab therapy. Although 
HER3 does not possess intrinsic kinase activity, HER3 
can form heterodimers upon ligand binding and activate 
the phosphatidylinositol 3-kinase (PI3K) pathway. HER3 
is also believed to be an attractive drug target for cancer 
therapy [10].

Molecular targeted drugs have been tested in clinics 
and to identify patients likely to respond to the drugs is 
of importance for receiving clinical benefit from them. 
For example, Abl kinase inhibitors such as imatinib and 
nilotinib impede the proliferation of cells expressing the 
BCR-ABL fusion protein in vitro and have been proven 
to be beneficial on the population in clinical settings [11, 
12]. Moreover, the clinical benefits of anti-HER2 therapies 
have been shown in patients with HER2 overexpression or 
HER2 amplification, confirmed by immunohistochemistry 
and fluorescence in situ hybridization (FISH), respectively.

We recently reported that the novel investigational 
EGFR/HER2 kinase inhibitor TAK-285, which has anti-
tumor activity and penetrates the rat blood-brain barrier, 
might be used for the treatment of HER2-overexpressing 
metastatic breast cancers [13-17]. We here searched for 
the determinants of sensitivity to TAK-285 and revealed 
high HER3 phosphorylation in TAK-285-sensitive cells. 
Subsequent pharmacological and siRNA experiments 
demonstrated that HER3 is mainly phosphorylated by 
HER2 and not by EGFR and that it plays an important role 
in the proliferation of TAK-285-sensitive cells. Therefore, 
phospho-HER3 could be used as a potential biomarker to 
select patients likely to respond to TAK-285.

RESULTS

HER3 or HER2 gene expression is inversely 
correlated to IC50 values of TAK-285

To identify the determinants of sensitivity to TAK-
285, we examined the relationship between the IC50 values 
of TAK-285 for cell growth inhibition and EGFR, HER2, 
HER3, HER4, phosphatase and tensin homolog (PTEN), 
and IGF-1R gene expression in a panel of human breast 
cancer cell lines, other types of cancer cells, and non-
transformed cells in vitro. These genes were selected 
because they reportedly regulate the HER family signaling 
pathway and trastuzumab resistance [18, 19]. TAK-285 
dose-dependently inhibited the proliferation of all cell 
lines tested. The IC50 values of TAK-285 were determined 
in 35 cell lines and ranged widely (0.011~17 μmol/L), as 
described in Supplementary Table 1. Pearson’s coefficient 
(r) indicated an inverse correlation between the IC50 values 
of TAK-285 and HER2 or HER3 gene expression (Figure 

1).

HER3 is highly phosphorylated in TAK-285-
sensitive breast cancer cell lines

Immunoblot analyses showed coexpression 
of HER2 and HER3 in TAK-285-sensitive cell lines 
(Supplementary Figure 1A). We assumed that HER2 and 
HER3 cooperatively regulate the proliferation of TAK-
285-sensitive cancer cells. We determined the relationship 
between the IC50 values of TAK-285 and phospho-HER3 
expression levels in 16 breast cancer cell lines. Phospho-
HER3 was detected in TAK-285-sensitive cells (Figure 
2A). This result shows that HER3 is activated in these 
cells. HER2 was not highly expressed in MDA-MB-
175VII cells, but HER3 was highly phosphorylated 
(Figures 2A and 3). Wilson et al. recently showed that 
HER3 is activated by its ligand neuregulin-1 (NRG-1) in 
MDA-MB-175VII cells [20]. To investigate the effect of 
TAK-285 on the phospho-HER3 level, TAK-285-sensitive 
cell lines were treated with TAK-285 and immunoblot 
analysis was performed. TAK-285 treatment reduced 
the level of both phopho-HER2 and phospho-HER3 in 
sensitive cell lines (Figure 2B). HER3 possesses at least 
six PI3K binding sites and plays an important role in 
activating the Akt signaling pathway [21, 22]. Therefore, 
we examined phospho-Akt levels in cell lysates and found 
that the levels were clearly decreased after TAK-285 
treatment of TAK-285-sensitive cell lines (Figure 2B). In 
A431 cells that overexpress wild-type EGFR, TAK-285 
treatment led to reduced phospho-HER3 and phospho-Akt 
levels, despite the absence of phospho-HER2 or HER2 
(Supplementary Figure 1B). In contrast, phospho-HER2 
and phospho-HER3 were not detected, and phospho-Akt 
was not decreased in TAK-285-insensitive cell lines after 
the treatment of TAK-285 (Figure 2C). These data indicate 
that phospho-HER3 could be a potential predictive marker 
for TAK-285 sensitivity.

It is known that HER3 does not possess intrinsic 
kinase activity and is trans-phosphorylated by EGFR 
or HER2 [23, 24]. To determine which members of the 
HER family phosphorylate HER3, we treated TAK-285-
sensitive cells with the selective EGFR and HER2 kinase 
inhibitors erlotinib and CP-724,714, respectively [25, 
26] and performed immunoblot analyses of phospho-
HER2 and phospho-HER3. CP-724,714, but not erlotinib, 
reduced phospho-HER2 and phospho-HER3 in TAK-285-
sensitive cells (Figure 3). In addition, erlotinib showed 
weaker anti-proliferative effects than CP-724,714 in the 
TAK-285-sensitive cell line HCC1419 (Supplementary 
Figure 1C). These observations suggest that HER3 is 
phosphorylated by HER2 in most TAK-285-sensitive cells 
and that HER2:HER3 heterodimer plays important roles in 
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the proliferation of these cells.

HER3 positively regulates proliferation of TAK-
285-sensitive cells

To investigate the involvement of HER3 in cancer 
cell proliferation, we examined the effects of HER3 
knockdown in TAK-285-sensitive and -insensitive cells. 
The cells were transfected with nonsilencing siRNA (NS 
siRNA) or HER3 siRNA. Cell growth inhibition assays 
(Figure 4, Upper panel, A-D) were performed, and HER3 
gene expression was quantified relative to GAPDH gene 
expression by quantitative PCR (Figure 4, Lower panel, 
E-H). HER3 protein knockdown was confirmed by 
immunoblot analysis (Supplementary Figure 2A). BT-474 

and SK-BR-3 cells were used as TAK-285-sensitive cell 
lines. MCF-7 and ZR-75-1 cells were used as TAK-285-
insensitive cell lines. Although the level of HER3 mRNA 
expression was reduced after HER3 siRNA transfection in 
all cell lines tested, cell proliferation was inhibited only 
in TAK-285-sensitive cell lines, suggesting that HER3 
positively regulates the growth of TAK-285-sensitive cells. 
The HER family consists of EGFR, HER2, HER3, and 
HER4. Therefore, we examined the effects of knockdown 
of individual HER family members on the proliferation 
of TAK-285-sensitive cells. The BT-474 and SK-BR-3 
cells were transfected with NS or HER-specific siRNA 
and growth inhibition assays were performed. Specificity 
of each siRNA was confirmed by quantitative PCR 
analysis (Supplementary Figure 2B). In these experiments, 
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Figure 1: An inverse correlation between HER2 or HER3 gene expression and IC50 values of TAK-285 for cell growth 
inhibition. Cell growth inhibition assays were performed using 35 human cell lines. Gene expression levels were determined by 
quantitative PCR and were normalized to GAPDH gene expression levels.
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siRNA-mediated HER2 or HER3 knockdown, but not 
EGFR or HER4, inhibited the proliferation of TAK-285-
sensitive cells (Figure 4I and J), indicating upregulation 
of HER2:HER3 signaling in TAK-285-sensitive cell lines. 
These data further indicate that phospho-HER3 could be 

used as a potential molecular marker for selecting patients 
likely to respond to TAK-285.

Figure 2: HER3 is highly phosphorylated in TAK-285-sensitive cells but not in TAK-285-insensitive cells. A. Immunoblot 
analyses of 16 breast cancer cell lines using antibodies to phospho-HER2, phospho-HER3, and GAPDH. IC50 values of TAK-285 are 
presented in blue above the names of cell lines. B. TAK-285-sensitive cells were treated with dimethyl sulfoxide (DMSO) (control) or 1 
μmol/L TAK-285 for 2 h. Phospho-HER2, phospho-HER3, and phospho-Akt levels were determined using immunoblot analyses. C. TAK-
285-insensitive cell lines were used. The experimental procedure was the same as that in Figure 2B.
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DISCUSSION

Selection of patients likely to respond to molecular 
targeted therapeutics is of increasing clinical importance. 
For example, approximately 4% of non-small-cell lung 
cancers express the EML4-ALK fusion protein, providing 
a marker for responsiveness to the ALK kinase inhibitor 

crizotinib [27, 28]. Indeed, predictions of responses to 
molecular targeted drugs would increase the benefits for 
responsive individuals and the opportunities to protect 
them from unnecessary adverse effects.

The present data show that HER2 and HER3 are 
coexpressed and positively regulate the proliferation 
of TAK-285-sensitive cell lines. Moreover, HER3 was 

Figure 4: HER3 knockdown leads to growth inhibition in TAK-285-sensitive cells but not in TAK-285-insensitive cells. 
Cells were transfected with 5 nmol/L NS or HER3 siRNA. Cell growth inhibition assays were performed (Upper panel, A-D), and HER3 
gene expression was quantified relative to GAPDH gene expression (Lower panel, E-H). BT-474 (A, E) and SK-BR-3 (B, F) cells were 
used as TAK-285-sensitive cell lines. MCF-7 (C, G) and ZR-75-1 (D, H) cells were used as TAK-285-insensitive cell lines. BT-474 (I) and 
SK-BR-3 (J) cells were transfected with NS, EGFR, HER2, HER3, or HER4 siRNA. Growth inhibition assays were performed 5 days after 
transfection. Data are represented as the mean ± SD.
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highly phosphorylated in TAK-285-sensitive cells and 
TAK-285 treatment reduced the phospho-HER3 level in 
these cells. Thus, we propose that phospho-HER3 could 
be used as a molecular biomarker to select patients likely 
to respond to TAK-285. Lee-Hoeflich et al. reported that 
the phospho-HER3 level is highly upregulated in HER2-
amplified breast cancer patient tissues [29]. We speculated 
that HER2:HER3 heterodimer plays an important role in 
the maintenance of cell proliferation in not only cultured 
cell lines but also clinical settings. Although other HER 
family members might be involved in cell proliferation, 
the present pharmacological approach using a selective 
HER2 or EGFR inhibitor and RNA interference-mediated 
knockdown revealed that the HER2:HER3 heterodimer is 
a predominant regulator of the proliferation of TAK-285-
sensitive cells. Engelman et al. and Buck et al. reported 
high HER3 expression and phosphorylation in EGFR 
kinase inhibitor-sensitive cancer cell lines [30, 31]. In 
agreement with previous study results, the present data 
suggest that HER3 is a common key regulator of the 
proliferation of EGFR- and HER2-dependent cancer cells.

We showed that MDA-MB-175VII cells with low 
HER2 expression are sensitive to TAK-285. Wilson et al. 
recently reported that this cell line overexpresses NRG-
1 and demonstrated that a NRG-1-mediated autocrine 
loop activates HER3 via HER2 kinase [20]. Although we 
could not detect phospho-HER2 in MDA-MB-175VII 
cells by immunoblot analysis (Figure 2A), TAK-285 and 
CP-724,714 treatments reduced the phospho-HER3 level 
(Figure 3 and data not shown). These data suggest that 
weak HER2 activity might trans-phosphorylate HER3 
and may be indispensable for the maintenance of the 
proliferation of MDA-MB-175VII cells. SK-OV-3 cells 
harbor both HER2 amplification and PIK3CA (H1047R) 
mutation. In these cells, TAK-285 did not reduce the 
phospho-Akt level (Figure 2C), suggesting that the SK-
OV-3 cells are resistant to TAK-285 because of PIK3A 
mutation-mediated activation of the Akt pathway or 
the lack of HER3 expression (Figure 2C). In this cell 
line, the Akt signaling pathway could be activated by 
PIK3CA mutation irrespective of HER2 amplification. 
Loss of PTEN or PIK3CA mutation confers resistance to 
trastuzumab and lapatinib [32-34], although conflicting 
reports have been reported [35, 36].

Control of the HER3-Akt signaling pathway may be 
an important strategy for avoiding acquired resistance, as 
HER3 and Akt were reactivated after prolonged exposure 
to gefitinib [37]. HER3 and Akt were completely inhibited 
6 h after TAK-285 treatment, whereas they were slightly 
reactivated 48 h after treatment (Supplementary Figure 
3). In addition, TAK-285 treatment increased the HER3 
protein level, similar to gefitinib treatment ([38] and 
Supplementary Figure 3). Further TAK-285 exposure may 
recover Akt activity via kinase-inactive HER3. Therefore, 

the combination of the Akt or PI3K kinase inhibitor with 
TAK-285 is a reasonable approach to prevent or delay 
drug resistance.

In this study, we analyzed the expression and 
phosphorylation of genes and proteins involved in HER 
signaling and identified a potential molecular marker 
for TAK-285 sensitivity. The present data indicate that 
patients likely to respond to TAK-285 might be identified 
prospectively on the basis of phospho-HER3 expression. 
Moreover, tumors with high phospho-HER3 levels appear 
to include TAK-285-sensitive subpopulations with and 
without HER2-amplification, such as MDA-MB-175VII 
cells with low HER2 expression.

MATERIALS AND METHODS

Cells and reagents

A2780, A375, A431, AU565, BT-474, BT-483, 
Calu-3, Cell System-Fb, H2228, HCC1419, HCC1937, 
HCC1954, HCC70, HCT116, HCC4006, HT-29, KYSE-
30, K562, MCF-7, MCF-10A, MDA-MB-175VII, 
MDA-MB-231, MDA-MB-435s, MDA-MB-468, MDA-
MB-361, MDA-MB-453 MES-SA, MES-SA/Dx-5, 
MRC-5, NCI-N87, NCI-H1781, OE19, OE21, OE33, 
OV-90, PC-3, SK-BR-3, SK-OV-3, T-47D, UACC812, 
UACC893, and ZR-75-1 cells were purchased from 
commercial sources and were maintained in media as 
prescribed by the suppliers. TAK-285 was synthesized at 
Takeda Pharmaceutical Company, Ltd. CP-724,714 was 
synthesized at Takeda Pharmaceutical Company, Ltd., 
according to published procedures [26, 39]. Erlotinib 
hydrochloride was extracted from Tarceva (Roche) at 
Takeda Pharmaceutical Company, Ltd.

Growth inhibition assay

Cells were seeded into 96-well plates and treated 
with TAK-285 on the following day. Relative cell numbers 
were estimated by the sulforhodamine B staining method 
or the CellTiter-Glo assay (Promega). IC50 values for cell 
growth inhibition were calculated using SAS software 
(version 5.0).

Quantitative PCR

Total RNA was extracted from each cell line using 
the RNeasy mini kit (Qiagen). Gene expression assays 
for EGFR, HER2, HER3, HER4, and glyceraldhyde-3-
phosphate dehydrogenase (GAPDH) were purchased from 
Applied Biosystems. For data analysis, the Ct value was 
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normalized to the Ct of GAPDH for each sample in order 
to obtain ∆Ct and then the normalized ∆Ct was calibrated 
to control samples to calculate ∆∆Ct values.

Immunoblot analysis

Cells were seeded into 24-well plates and treated 
with compounds for 2 h on the following day. Growth 
medium was removed and cells were lysed. Protein was 
resolved by SDS-PAGE and transferred to polyvinylidene 
fluoride membranes. The antibodies used in this study 
were specific for EGFR (#2232), HER2 (#2242), pHER2 
(Tyr1248; #2247), pHER3 (Tyr1289; #4791), pAkt 
(Ser473; #9271, Cell Signaling Technology), HER3 (C-
17, Santa Cruz Biotechnology), and GAPDH (ab9484-
100, Abcam).

Small interfering RNA (siRNA) transfection

Non-silencing (NS) control (Cat. No. 1022076), 
HER2 (Cat. No. SI02223571), and HER4 (Cat. No. 
SI00074193) siRNAs were purchased from Qiagen. 
EGFR siRNA (Cat. No. M-003114-01-05) and HER3 
siRNA (Cat. No. sc-35327) were purchased from 
Dharmacon and Santa Cruz Biotechnology, respectively. 
Cells were transfected with 5 nmol/L siRNAs using 
LipofectAMINE 2000 (Invitrogen). Cell growth inhibition 
assays were performed, as described above, 3 or 5 days 
after transfection. Total RNA was extracted 2 days after 
transfection.
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