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ABSTRACT
This short note presents the data and rationale for adding five generic non-

oncology drugs from general medical practice to gemcitabine, nab-paclitaxel, a current 
standard cytotoxic chemotherapy of pancreatic ductal adenocarcinoma. The regimen, 
called IPIAD, uses an angiotensin receptor blocker (ARB) irbesartan indicated for 
treating hypertension, an old antimicrobial drug pyrimethamine indicated for treating 
toxoplasmosis or malaria, an old antifungal drug itraconazole, an old broad spectrum 
antibiotic azithromycin and an old antibiotic dapsone. In reviewing selected growth 
driving systems active in pancreatic ductal adenocarcinoma then comparing these 
with detailed data on ancillary attributes of the IPIAD drugs, one can predict clinical 
benefit and slowing growth of pancreatic ductal adenocarcinoma by this augmentation 
regimen.

INTRODUCTION

This paper presents the rationale for adding five 
already approved and marketed generic drugs from general 
medical practice to the current standard current first line 
chemotherapy for pancreatic ductal adenocarcinoma 
(PDAC). This adjuvant regimen, called by its acronym, 
IPIAD, uses an old angiotensin receptor blocker (ARB) 
irbesartan, an old antimicrobial drug pyrimethamine, 
an old antifungal drug itraconazole, an old antibiotic 
azithromycin, and an old antibiotic dapsone. 

PDAC is a highly desmoplastic tumor where 
nonmalignant tumor stroma plays a more active symbiotic 
role in growth of the malignant cells than is seen in most 
other cancers. The nonmalignant cells of PDAC grow 
in a trophic and immunosuppressive tumor environment 
that has neutrophils, macrophages, fibroblasts, and a 
desmoplastic stroma rich in hyaluronan [1]. This stroma 
requires a separate treatment regimen from the malignant 
PDAC cells. Survival rates at 5 years are low. At 
presentation, half of all PDAC have already metastasized. 
For unclear reasons, incidence of PDAC has been steadily 
increasing at 0.5 to 1% per year [1].

The IPIAD regimen was designed specifically to 
improve standard current chemotherapies for metastatic 
PDAC particularly in cases where the benefits of resection 
is questionable. Pancreatectomy and even oligometastases 
resection can be offered to those achieving tumor 
reduction with chemotherapy. IPIAD, by inhibiting 
aspects of growth drive in PDAC as outlined here, was 
constructed to help current standard gemcitabine, nab-
paclitaxel achieve this bulk reduction with consequent 
survival benefits. May reduce the local mass size, promote 
tumor downstaging, and increase the likelihood of 
resection. Patients presenting with inoperable metastatic 
PDAC who experience a major response after neoadjuvant 
treatment can occasionally be restaged, have an increased 
survival, and some may then have tumors small enough 
to resect [1–3].

The IPIAD drugs were chosen by searching 
for potentially constructive intersections between the 
pathophysiologic growth drive mechanisms used by 
PDAC with the primary or ancillary physiological effects 
of common, low side effect medicines used in general 
medical practice (non-oncology drugs) that would interfere 
with them. The primary consideration in selecting drugs 
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included in IPIAD was their having a low side effect risk 
and good safety when used in general medical practice.

This is the process that led to several repurposed 
multidrug regimens for adjunctive treatment of cancer, 
mainly glioblastoma, examples listed in Table 1 [4–9]. In 
these papers we outlined the reasons why a paradigm shift 
to multidrug regimens will be required to significantly stop 
a metastasized deadly cancer like glioblastoma or PDAC 
and why repurposed older drugs from general medicine 
should comprise many of those drugs. These reasons are 
summarized in Table 2.

The recent pilot clinical study of one such multidrug 
regimen for glioblastoma, CUSP9v3, showed that ten 

drugs to treat this cancer can be given daily over many 
years with benefit and without problems if close patient 
follow up is in place and a low-risk drug mix was carefully 
chosen [4].

As of this writing in 2023, widely metastatic PDAC 
is usually incurable [10]. Small PDACs, caught and 
removed early, before metastasis, have a good prognosis, 
a 5 yr. Overall survival of >80% [11]. Thus current efforts 
are aimed at reducing the extent of PDAC tumor burden 
with pre-surgical chemotherapy and/or irradiation [12, 13]. 

Current chemotherapies for PDAC commonly use 
either a) gemcitabine, nab-paclitaxel or b) FOLFIRINOX 
(folinic acid, fluorouracil, irinotecan, oxaliplatin) [14]. 

Table 1: List of previous multidrug adjuvant regimens from the IIAIGC study center using repurposed, 
older, non-oncology drugs mainly but not exclusively directed at treating glioblastoma
Regimen Repurposed drugs used References

CUSP9v3 Aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, 
ritonavir, sertraline [4]

OPALS Pyrimethamine, cyproheptadine, azithromycin, loratadine, spironolactone. [5]
EIS Itraconazole, metformin, naproxen, pirfenidone, quetiapine, rifampin [6]
MTZ Minocycline, telmisartan, zoledronic acid [7]
ADZT Apremilast, dapsone, telmisartan, zonisamide [8]
MDACT celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, telmisartan [9]

See the references for details on how each adjuvant drug interferes with malignant growth pathways. Omitted from listing here 
are standard cytotoxic drugs meant to be used with a given regimen. Only the repurposed drugs from general medicine are 
listed. Four of the drugs discussed in the context of treating glioblastoma in these works, dapsone, azithromycin, itraconazole, 
and pyrimethamine, are included in IPIAD. These are mentioned in italics. Telmisartan, mentioned in underlines, is an ARB 
marketed to treat hypertension that is in the same class as irbesartan.

Table 2: Eleven core reasons why a multidrug adjunctive regimen using already-marketed drugs 
will be needed to stop an aggressive, metastatic, currently deadly cancer like PDAC
# Rationale for using repurposed medicines
  1. They are already approved for medical use.
  2. General practitioners are already familiar with their use.
  3. They are generally cheap and readily available worldwide.
  4. They have well-known and low risk of side effects
  5. We are constrained to treat today’s illness with today’s tools.
  6. Directly cytotoxic, genotoxic drugs have limits on how many and how much they can be used.
  7. Cancer cells pathologically engage the same physiological systems as used by non-malignant tissues. Many drugs 

have already been developed for those core systems.
# Rationale for requirement of a multidrug regimen
  8. Many drugs needed to address malignant cells’ shifting reliance on multiple alternate growth drives. 
  9. Inherently, multiple malignant subpopulations exist in PDAC, each with its own set of growth drives and inhibition 

susceptibilities.
10. Growth drives change over time, driven in part by treatments.
11. Tumor stroma contributes to malignant growth and must be addressed separately.

Table 2 here assumes absence of a “silver bullet” that might target a simple underlying cause for the many physiological 
changes in malignant growth.
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IPIAD is designed to contribute to tumor mass downsizing, 
to be used alongside gemcitabine, nab-paclitaxel.

Below, the attributes of irbesartan, pyrimethamine, 
itraconazole, azithromycin, and dapsone are reviewed 
with focus on how these attributes interact with several 
established PDAC growth driving systems in a way that 
is predicted to meet our goals of tumor mass downsizing. 
Four of the IPIAD drugs, pyrimethamine, itraconazole, 
azithromycin, and dapsone have been discussed in the 
context of adjunctive treatment of glioblastoma, shown in 
Table 1.

Irbesartan

The drug

Irbesartan is an ARB that binds to the angiotensin II 
receptor 1, preventing receptor activation by angiotensin 
II. Irbesartan is commonly used to treat hypertension  
[15, 16]. Side effects are minimal and usually well tolerated. 
Angiotensin converting enzyme inhibitors (ACEi) are a 
related older class of medicine for treating hypertension by 
reducing conversion of angiotensin I to angiotensin II.

Intersection with PDAC

A strong rationale for adding irbesartan to 
gemcitabine, nab-paclitaxel are four epidemiological 
studies:

(1)	 The empirical data of Zhou et al. showed longer 
median survival in advanced PDAC in people 
who took irbesartan, ~15 months, alongside of 
gemcitabine, nab-paclitaxel, compared to those 
on gemcitabine, nab-paclitaxel alone, ~10 months 
[17]. That comparative study was done on the basis 
of preclinical study showing that PDAC with low 
expression of c-Jun responded better to gemcitabine 
compared to PDACs with high c-Jun expression 
[17]  - that plus demonstrations that irbesartan 
lowered PDAC expression of c-Jun. It is noteworthy 
in this context of c-Jun and gemcitabine, that a 2015 
study showed that PDAC survival prolongation 
by ARB use was particularly seen in those on a 
gemcitabine containing regimen [18, 19].

(2)	 A 2023 study using a different cohort of 700 PDAC 
cases showed an association of angiotensin II 
signaling inhibition by ARBs or ACEi and longer 
survival compared to those not using an ARB or 
ACEi [20].

(3)	 The epidemiological study of Keith et al. looking 
at 8,000 PDAC cases of all stages. They found a 
reduction in PDAC mortality in ARB users and 
some but lesser benefit from ACEi use [21].

(4)	 Cerullo et al. studied records of 4299 PDAC cases 
who had resection for localized PDAC. Those on an 
ARB had a 24% reduced risk of death at 5 years [22].

A 2013 clinical trial in advanced metastatic PDAC 
using an ARB similar to irbesartan, candesartan 16 mg/
day, plus standard gemcitabine gave a progression free 
survival (PFS) and overall survival that the authors 
considered similar to historical controls [23]. However, 
PFS was 3.5 months in those receiving 8 mg candesartan/
day and 4.6 months in those receiving 16 mg/day [23]. 
Does this mean using the maximum recommended dose of 
candesartan, 32 mg/day, will give incremental benefit? Cf. 
the orthopedics aphorism “if a little force doesn’t work, 
maybe more force will”. Since PDAC tumors synthesize 
angiotensin II without use of ACE [24] this may account 
for the stronger PDAC growth inhibition seen with ARBs 
compared to ACEi.

Hypotension is a risk with any ARB use but can be 
frequently addressed in normotensives by some volume 
expansion with intake of a liter of salty tomato juice like 
V-8 juice™ or dose reduction.

Multiple animal studies showing ARB use inhibited 
PDAC growth preceded clinical ARB studies in PDAC 
[25–28].

One epidemiological study failed to find an 
association between ARB use and survival in PDAC [29].

Recognition that angiotensin II signaling forms 
one of the many overactive signaling systems active in 
glioblastoma led to inclusion of an angiotensin converting 
enzyme inhibitor in the CUSP9v3 regimen [4]. Many 
organs, including pancreas, have endogenous renin-
angiotensin systems functioning independently from the 
renal-hepatic-lung system associated with hypertension 
[30]. The renin-angiotensin signaling system is often 
found deranged or hijacked to promote malignant growth 
across the common human cancers [31].

A further and important reason to add an ARB 
like irbesartan to PDAC treatment should be noted. The 
presence of sarcopenia is common and lowers survival 
duration in PDAC [32, 33]. Angiotensin II signaling at 
angiotensin II receptor 1, the receptor that ARBs block, 
contributes to sarcopenia across several diseases including 
heart failure, Alzheimer’s disease, and the common 
cancers [34, 35]. Several sartan class ARBs lowered 
muscle loss in patients with cardiovascular disease [36], 
in hemodialysis patients [37], and in old mice [38].

Pyrimethamine

The drug

Pyrimethamine is an old generic antibiotic used 
today mainly in treatment or prophylaxis against 
Toxoplasma gondii, Pneumocystis jirovecii, Plasmodia 
and other protists. Pyrimethamine is one of several 
antibiotics that are based on dihydrofolate reductase 
(DHFR) inhibition. It is a lipophilic DHFR similar to 
hydrophilic methotrexate. Pyrimethamine also inhibits 
thymidine phosphorylase, methotrexate does not. 
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How  these inhibitions fit into folate metabolism is 
depicted in Figure 1.

Intersection with PDAC

Pyrimethamine has inhibitory effects on four growth 
drive elements of PDAC - (1) DHFR, (2) myeloid derived 
suppressor cells (MDSC), (3) STAT3, and (4) thymidine 
phosphorylase.

DHFR

DHFR is essential for normal functioning of the 
folate cycle. Pyrimethamine’s antibiotic activity in treating 
malaria, toxoplasmosis, pneumocystis, etc is based on a 
preferential inhibition of microbial DHFR compared to 
human but it does also inhibit human DHFR [39, 40]. 
Methotrexate is a standard DHFR inhibitor used in several 
cancer chemotherapies [41–43].

Pyrimethamine’s Ki = 38 nM at DHFR, is 
comparable to that of the more commonly used DHFR 
inhibitor methotrexate, Ki = 2.3 nM or the DHFR natural 

substrate folinic acid Ki = 320 nM, and folic acid Ki 
= 830 nM [39, 40]. For methotrexate to be active, it 
must be retained within the cell, which occurs when 
it becomes polyglutamated. Pyrimethamine does not 
require polyglutamination to be retained within cells. 
Pyrimethamine treatment at higher doses can give a 
reversible bone marrow suppression, making periodic 
blood monitoring advisable [44, 45]. 

In an acute myelogenous leukemia model, 
pyrimethamine was more effective in inhibiting growth 
than was methotrexate. In vitro proliferation was reduced 
2.5 fold at 0.1 µM and 12.7 fold at 0.5 µM [46]. Several 
patients with polycythaemia vera and with essential 
thrombocythemia were successfully controlled with 
pyrimethamine, reported in 1987 [47].

Steady state pyrimethamine plasma level is ~1 μM 
at about 2–3 weeks following a dose of 12.5 mg/day, 
compared to ~6 μM with 50 mg/day [48]. Pyrimethamine 
has exhibited significant in vitro cytotoxicity to chronic 
lymphocytic leukemia cells within this dose range while 
showing no cytotoxicity to mixed leukocytes from healthy 
normals [48]. It is unclear why early reports in the 1970s 

Figure 1: Simplified overview of pyrimethamine effects on the folate cycle and STAT3. DHFR, dihydromethylfolate 
transferase; 5-FU, fluorouracil; SHMT, serine hydroxymethyltransferase; vit B6, vitamin B6, (pyridoxal vitamers).
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of successful pyrimethamine treatment (2 mg/kg/day for 
7 days) of meningeal recurrence of acute lymphoblastic 
leukemia in children have not been followed up [49].

MDSC and STAT3

Morphologically MDSC appear on H&E as 
neutrophils or monocytes. Neutrophil MDSC are CD15+ 
CD14− CD33dim HLA-DRneg. Monocyte MDSC are 
CD15− CD14 + CD33pos HLA-DRneg [50]. Although 
MDSC function is important in immune response 
moderation and normal wound repair, MDSC exert both 
immune response inhibiting and tumor growth trophic 
effects in the common cancers, including in PDAC  
[51–53].

STAT3 is a ~800 amino acid, 92 kDa transcription 
factor resident in an inactive form in cytoplasm under 
basal conditions. It is a member of a family of seven 
closely related transcription factors that are essential for 
normal cells’ function but often elevated and overactive in 
the common cancers, including in PDAC [54–56].

STAT3 is a signaling hub protein, a meeting 
point of many cellular signaling pathways, activated 
(phosphorylated) via many different inputs from these 
pathways. Several different cytokines acting on the 
outer cell membrane are transduced through the STAT3 
signalling hub. Once activated (phosphorylated), P-STAT3 
translocates to the nucleus as a dimer, where it binds to 
9 base pair regions in the promoters of target genes to 
regulate transcription. In addition to regulating genes 
controlling proliferation, survival, and pluripotency, 
increase in P-STAT3 activity is a feature of inflammation 
[57–59]. P-STAT3 signaling plays a central role in MDSC 
survival and the production of immunoinhibiting arginase 
in MDSCs [60]. Elevation of P-STAT3 function drives 
increasing MDSC in PDAC [61–64].

MDSC synthesize and secrete arginase with 
consequent local arginine depletion inhibits T cell function 
[51, 65, 66]. Local arginase is just one of several T cell 
suppressing factors active in PDAC [53, 67, 68]. 

STAT3 is activated in PDAC intratumoral MDSC. 
Inhibiting STAT3 function reduces MDSC’s immune 
suppressing activity [69–72]. Inhibition of STAT3 with 
pyrimethamine in a murine breast cancer model resulted 
in decreased in vivo tumor growth and enhanced immune 
response [73]. Pyrimethamine similarly inhibited STAT3 
and mesothelioma cell growth while having minimal effect 
on non-malignant pleural cell growth [74].

P-STAT3 activity is but one of the coalition of 
drivers increasing MDSC [75–77]. Inhibition of P-STAT3 
function generally reduces the numbers and function of 
MDSC [78–80]. A study demonstrated a pyrimethamine 
mediated inhibition of STAT3 and proliferation of lung 
adenocarcinoma cells [81]. It has yet to be shown if 
the specific P-STAT3 function inhibition produced by 
pyrimethamine in clinical treatment of PDAC does this 
also or not.

Thymidine phosphorylase

Thymidine phosphorylase catalyzes phosphorylation 
of thymidine or deoxyuridine to respectively thymine or 
uracil and 2-deoxyribose 1-phosphate as in Figure 1. This 
is an essential step in thymidine recycling.

Thymidine phosphorylase activity is commonly 
increased in malignant tissue across the common cancers 
[82–84] and is specifically so in PDAC where increased 
thymidine phosphorylase levels correlated with shorter 
survival [85–89]. Thymidine phosphorylase is indeed a 
worthwhile target to inhibit in PDAC.

Itraconazole

The drug

Itraconazole is a commonly used antifungal drug 
used to treat both minor skin infections with Tinea, 
Candida, Malassezia spp., etc., or more serious invasive 
fungal disease. Itraconazole is one of the CUSP9v3 drugs 
used in glioblastoma treatment and is seeing increasing 
use as adjunct in other cancers’ chemotherapies [4, 90]. 
By blocking fungal ergosterol synthesis, itraconazole 
disrupts fungal cell wall integrity resulting in fungal cell 
death [91].

A major problem in interpreting clinical data on 
itraconazole in PDAC is its poor and erratic absorption. 
Itraconazole must be given with 200–300 ml of a low pH 
liquid - Coke™, orange juice, or 15 ml of vinegar 5% acetic 
acid in 200 ml water are examples. It has been common 
to prescribe itraconazole without mentioning this essential 
aid to itraconazole’s absorption.

Preclinical data

Older reviews outlined several ways itraconazole 
interferes with cancer growth [3, 92, 93].

A Bak-1 activation dependent apoptosis was 
identified in CFPAC-1 cells. These data suggested that 
itraconazole exhibited antiproliferative effects in PDAC 
by inducing apoptosis through Bak-1 activation. [94]. 
Itraconazole induced PDAC cells’ cytotoxicity in vitro that 
could be reversed by recombinant TGF-beta [95].

Hedgehog

Itraconazole inhibits Hedgehog signaling (Hh)  
[96–99]. Hh signaling is a core signalling element in 
normal organogenesis [100–103]. Excessive Hh signaling 
is an important growth driver in PDAC [104–107] as it is 
in many of the common deadly cancers [108–110]. 

Antimicrobial function

Since the pancreatic duct has direct communication 
with the duodenum at the major duodenal papilla, and 
PDAC usually starts a few cm distal to that, it is not 
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surprising that PDAC tissue is not normally sterile [111]. 
Retrograde travel deep into the pancreatic tree would be 
easy and has been shown to occur. Bacterial DNA was 
detected in 76% of resected PDACs and in 15% of normal 
pancreases [112]. Akut et al. found PDAC tissue had 
~3000-fold increased fungal DNA compared to normal 
pancreases [113]. Malassezia, Pseudoxanthomonas, 
Streptomyces, Saccharopolyspora and Bacillus clausii, 
Porphyromonas gingivalis and Fusobacterium nucleatum 
can be found within PDAC resected tissue [111–116].

Details of the relationship between microbial 
pancreas colonization and PDAC development have 
not been worked out in detail but the risk/benefit would 
favor use of itraconazole (and azithromycin, vide infra) 
on the basis of such colonization and the evidence that 
such colonization is, in fact, an element promoting PDAC 
growth.

Empirical

A 2022 study of Sawasaki et al. treated 81 PDAC 
cases with 400 mg itraconazole/day for four days every 14 
day cycle. The authors felt this resulted in longer survival 
compared to historical controls but this report lacked 
important details, preventing further interpretation [117].

A similar study in 2015 reported 38 advanced PDAC 
cases given docetaxel, gemcitabine, and carboplatin one 
day every 14 days with itraconazole 400 mg/d on days 
−2 to +2 from that. The authors felt this resulted in longer 
survival compared to historical controls but this report too 
lacked details that would allow further interpretation [93].

Both these studies were seriously flawed and 
lacked a true control group. The dose of itraconazole 
in these studies was needlessly low and the ten days 
of no itraconazole between dose days not justified by 
the ferocity of the disease they aimed to treat or by the 
pharmacokinetics of itraconazole.

Since itraconazole disrupts function of mammalian 
focal adhesion kinase with consequent decreased cell 
motility and angiogenesis [118], plus Hh and the other 
growth elements itraconazole inhibits, it should be given 
at high doses (as tolerated) and daily without interruption, 
even when the cytotoxic chemotherapy is given on an 
intermittent schedule.

A dramatic single case report was published in 2015 
of an advanced unresectable PDAC in a 64 y/o man, stage 
III, T4, N1, M0. His CA19-9 level was 189 units/ml (0–37 
units/ml). He was given capecitabine, and two cycles of 
cisplatin. Then, after restaging he was still unresectable. 
Palliative gemcitabine and erlotinib was started but 
stopped after a month when pulmonary histoplasmosis was 
diagnosed. After a six month course of itraconazole 200 
mg/day a repeat PET/CT showed a much reduced tumor 
size that was deemed resectable, A Whipple procedure 
was done. Five years later repeat evaluations showed no 
evidence of tumor [119]. Single case reports are not proof 
of anything but neither should they be ignored.

Azithromycin

The drug

Azithromycin is a broad-spectrum antibiotic that 
also has activity against several protists. Mechanism of 
action is by binding to microbial ribosomal RNA, stopping 
protein synthesis. It has a serum half-life of several days. 
Intracellular azithromycin levels are longer and are many 
times greater than serum levels. Neutrophil intracellular 
levels are several hundred times greater than serum levels 
[120]. Inhibition of autophagosome activity, lysosome 
leakage, and limiting dysfunctional inflammation are 
other azithromycin attributes seemingly independent of 
its antimicrobial activity [121].

Intersection with PDAC

Recent papers collected past research on the 
potential of azithromycin to interfere with aspects of 
malignant cell growth [121, 122]. 

Azithromycin inhibited lysosomal movement along 
microtubules by binding to tubulin but shows minimal 
cytotoxicity in vitro to non-transformed cells [123]. 
Azithromycin shows no evidence of cytotoxicity when 
used as antibiotic. 

Empirical

Heterotopic non-small cell lung cancer tumors 
grew slower in azithromycin treated mice [123]. In vitro 
exposure to azithromycin gave significant cell death in 
cell lines of breast, ovarian, lung, pancreatic, and prostate 
cancers, and in glioblastoma and melanoma cell lines 
[124]. In another study of several lung cancer cell lines, 
azithromycin addition increased growth suppression of 
tyrosine kinases inhibitors and enhanced DNA damaging 
drugs’ carboplatin, doxorubicin and etoposide, cytotoxic 
effects. Importantly, non-transformed cells in culture 
were unaffected by azithromycin [125]. In this study 
azithromycin’s effect was secondary to creation of 
lysosomal damage and leakage. Specifically in PDAC 
cell lines azithromycin showed minimal cell number 
reduction after 48 hours co-incubation but with gefitinib 
but cell number reduction was 50% after coincubation 
with azithromycin at between 5 and 15 microM 
[126]. Azithromycin augmented cationic amphiphile 
lansoprazole’s cytotoxicity to squamous cell carcinoma 
and lung cancer cell lines. Evidence pointed to defective 
autophagosome function as the mechanism of action [127].

Autophagy

Autophagy is the catabolic process that takes place 
when an autophagosome fuses with a lysosome. Contained 
within lysosomes are many different proteases, nucleases, 
glycosidases, lipases, phospholipases, phosphatases, 
peptidases and sulfatases. A lysosomal membrane proton 
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pump transfers protons from cytosol to lysosome, keeping 
lysosomes’ pH ~5, the optimum pH for the hydrolases. 
Lysosomes function to conserve amino acids, allowing 
their recycling. Accordingly, growth of squamous cell 
carcinoma cell lines in an amino acid sufficient culture 
medium becomes poor in the presence of azithromycin 
but goes back to baseline in an azithromycin containing 
medium with increased amino acid content [128].

Across the common cancers lysosomes tend to be 
more permeable than that of non-malignant cells. Since 
the common DNA damaging cancer chemotherapy drugs 
are sequestered in lysosomes, that relatively greater 
permeability is one of the origins of these drugs’ relatively 
selective cytotoxicity to malignant cells.

Anything that damages PDAC’s lysosomal 
membrane integrity will enhance cytotoxicity to a wide 
variety of pharmaceutical agents. Preclinical study of 
lysosomal permeabilization by experimental drugs 
sensitized PDAC’s cytotoxicity to gemcitabine [129, 
130], to the HER1 (EGFR)/HER2 tyrosine kinase inhibitor 
lapatinib [131] to Ca++ release from damaged lysosomes 
[132], to tumor necrosis factor related apoptosis-inducing 
ligand (TRAIL) [133], and ro 5-fluorouracil [134, 135].

As discussed in section 4. above, PDAC is usually 
found to be nonsterile [111–116]. Many different microbes 
have been identified growing in PDAC tissue. If this 
colonization is causative or contributory to PDAC growth, 
metastasis, or chemotherapy resistance, this would be 
another advantage for adding azithromycin to standard 
gemcitabine.

Among cancers, PDAC is relatively resistant to 
autophagy and to apoptosis. The relationship between 
apoptosis and autophagy is not simple. Cell death 
occurs with excess autophagy as well as with inadequate 
autophagy function [136, 137].

Dapsone

The drug

Dapsone is one of the first of modern antibiotics, 
introduced in the 1930s to clinical practice. Used today 
as an antibiotic for treating Hansen’s disease, malaria, 
toxoplasmosis, and tuberculosis i.e., dapsone also has an 
interesting side effect of reducing neutrophil degranulation 
and chemotaxis. On that basis dapsone reduces neutrophil 
mediated tissue damage in diseases like the bullous 
pemphigus and the neutrophilic dermatoses [138–141]. 
Dapsone reduced IL-8 synthesis in several experimental 
settings [142, 143]. As a consequence of IL-8 reduction, 
dapsone can lower the neutrophil to lymphocyte ratio 
(NLR).

It is on these same bases of (a) limiting IL-8, (b) 
inhibiting neutrophil degranulation and (c) preventing 
neutrophil chemotaxis, that dapsone is used to treat the 
neutrophil mediated rash of EGFR inhibitors osimertinib 
and erlotinib [5, 144–146]. By virtue of these three 

attributes, dapsone is used to reduce neutrophil mediated 
lung damage in acute respiratory distress (ARDS) 
including the ARDS of COVID19 [147–149].

Neutrophils and NLR in PDAC

Neutrophils contain significant amounts of VEGF 
and other angiogenic factors, and they deliver these 
growth factors to tumors, including to PDAC [150–154].

Dozens of previous studies in PDAC have shown 
that survival becomes shorter as the neutrophil-to-
lymphocyte ratio becomes higher. These studies were 
reviewed in 2021 [155]. Four new, independent studies 
reporting in 2023 have confirmed these past findings 
[156–159]. All these studies reflect the hundreds of studies 
showing this same association across all the common 
deadly cancers [160–163].

The tumor trophic function of neutrophils in PDAC 
[164–166] is reflected by a similar role in other common 
cancers [167–170]. PDAC both secrete into bloodstream 
and excrete into pancreatic juice significant amounts of 
IL-8 [171–179]. This IL-8 is trophic to both the malignant 
cells and their supportive stroma cells in PDAC.

The above data documents the established ability 
of dapsone to impede neutrophil accumulation in the 
neutrophilic dermatoses. By the same dapsone attributes, 
when carried over to PDAC, dapsone is projected to reduce 
the angiogenic, tumor trophic, and immunosuppressive 
functions of the IL-8 attracted tumor infiltrating and 
systemic neutrophils.

DISCUSSION AND CONCLUSION

Use of any untested experimental treatment involves 
risks. In the case of IPIAD, although the individual 
drugs are known to be of fairly low risk in their non-
oncology use, the combination of these five drugs has 
never been tested. Although no particular drug-drug 
interaction is foreseen based on our extensive data on their 
pharmacology, surprises can’t be excluded.

Because of the many unknowns in the early clinical 
use of such untested regimens like IPIAD, careful follow 
up and monitoring are required to detect any untoward 
events. This means easy access 24 hours a day, 7 days 
a week by telephone to the prescribing physician with 
weekly in person meetings with review of systems, 
laboratory blood work, and addressing tolerability are 
minimum requirements.

The target doses listed in Table 3 are at the high end 
of tolerability. This is required by the hardiness of PDAC. 
Metastatic PDAC will not be slowed by half-measures. 
Using these target doses also becomes safer when the 
monitoring recommendations are followed. Given these 
considerations altogether and the alternatives available 
in 2023, continuous daily IPIAD added to standard 
gemcitabine, nab-paclitaxel, nab-paclitaxel must be 
regarded as a conservative approach to metastatic PDAC.
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The reliability of relentless disease progression 
and short survival duration in metastatic PDAC plus our 
current lack of effective treatment to significantly lengthen 
survival, combined with the projected benign nature of 
continuous daily use of robust doses of the IPIAD drugs, 
altogether, warrant a pilot study of this regimen to run 
concomitantly with current standard cytotoxic treatments.
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